
Basic Smalltalk

Object concepts

The protocol is a list
of messages that can
be sent to an object
and represents the
interface to the
object.

age

An object contains
methods, each of which is
encapsulated inside the
object. A method is
executed only on receipt of
a correspondingly named
message.
A method consists of a
heading, an initial comment
(specification) and some
code.

 age

 “Answer the age
 of the receiver.”

Instance variables are
also encapsulated inside
each object. Each one is a
reference to another
object. In effect they
allow an object to store
data. This data describes
the state of the object
enabling it to have
memory and hence
behaviour. Data can be
acted upon by a method.

age

age

49

The internal structure of an
object remains hidden. The
user of an object must send a
message to access its methods
(code) and instance variables
(data).

An object, also referred to
as an instance of a class.
Objects are self-contained
components of software.

To get an object to do
something it must be sent a
message. A message is not
an object.

The receiver always
answers with a
message answer
that is itself an object.

Attributes are
the pieces of
information
an object
needs in order
to provide its
behaviour.

sender or
“client” object
makes a request

receiver or
“server” object

 49

 message answer

message
 age

Visible to user
i.e. another object

age

Methods (age) and instance
variables (age) are
encapsulated. Can only be
accessed by a message (age)
via the protocol.

^age

This method instructs the
receiver of the age
message to return, or
answer with, the object
that is referenced by the
instance variable age.
The number object 49 is
returned.

49

instance
variable

Class and hierarchy

Domain models and user interfaces

 Employs widgets

(buttons, drop-down
boxes, text-fields etc), and
graphics.

Object

 Account Toad Frog

HoverFrog

Degree of
abstraction
increases.
Objects
become more
generalised in
their
behaviour.

As subclasses
are created,
the behaviour
of instances of
those classes
becomes more
specific.

All objects inherit the
protocol of the class
Object

HoverFrog is a subclass of Frog. Instances of
HoverFrog respond to all the messages for
Frog and will possess further messages in order
to implement a more specific behaviour i.e.
HoverFrog instances possess the additional
attribute of height

Account, Toad and
Frog are all subclasses
of Object. Object is
their superclass.

Objects are organised into classes. Objects belonging to the same
class (instances of the class) have the same attributes and respond
to the same set of messages, responding to each message in an
identical manner. Instances of a class are initialised in the same
way. Objects of a subclass may or may not be initialised
differently from the objects of its superclass.

A class is a template for creating
instances of that class. All classes
are objects.

Domain model
(Ch5) The software
objects and
messages passing
between them that
makes up the
program. These are
separate from the
user interface.

Each user interface is
independent of the
domain model. It can
be changed without
affecting the
underlying objects
and messages. An
interface is the means
by which humans
interact with objects.

Graphical Interface

Text Interface
Text commands
entered at the
keyboard.

Software
models
some aspect
of the real
world.

Messages and their syntax

myAccount credit: 50

 credit: 50 is a keyword message.
Keyword messages will usually, but
not always, change the state of the
receiver. The selector is written with a
colon

Keyword messages
require an argument.
This is the piece of
information required
by the selector. An
argument is also an
object

The receiver

A message expression consists of a
receiver and a message.

message selector
credit:

Unary messages do not have an
argument.
Some keyword messages require
more than one argument.

myAccount balance

myAccount transfer: 100 to: yourAccount

balance is a
unary message

 aFrog bFrog

2. This results in
the unary
message
colour being
sent to bFrog

This message answer is the
object referenced the
instance variable colour of
bFrog e.g. Blue. This
object becomes the
argument to the third

aFrog sameColourAs: bFrog

1. The keyword message
sameColourAs: bFrog is
sent to aFrog

3. Finally aFrog sends
itself a colour:
message e.g. colour:
Blue

The message
answer is the
receiver aFrog

This message
expression results in the
sending of 3 messages.
bFrog collaborates
with aFrog

5 + 4

A binary message is composed of one or
two non-alphanumeric characters. It takes a
single argument that follows the selector.
Binary selectors are primarily used for
arithmetic messages and the concatenation
of strings.

‘Round up ’, ‘the usual suspects’

receiver argumentselector

The object 5 is the receiver of
the + 4 message. + is the
selector and 4 is the argument.

Precedence

printString is a unary
message that every object
inherits from Object. It
returns a string whose
characters are a
description of the receiver.
 (Ch 31 p26)

 Smalltalk precedence rules (Ch 14 p12)
1. Bracketed expressions are evaluated first,

work from left to right.
2. unary expressions are evaluated left to

right before (take precedence over)
binary expressions;

3. binary expressions are evaluated left to
right before (take precedence over)
keyword expressions;

4. keyword expressions are evaluated last,
again working left to right.

5. Warning! Although usually sufficient for
most purposes, these rules occasionally
lead us astray. See below.

Account new holder: 'William Gates ' , 3 printString

new is a class message
(unary) (Ch 22 p6). It is
sent to the class Account
to create an Account
instance

1. There are no
brackets so
Account new
is evaluated first.
It returns a new
instance of
Account.

2. The object 3
receives the
printString
message and
returns the string
'3'

3. The string 'William Gates '
receives the binary message , '3'
and returns the string
'William Gates 3'

4. The new Account instance
receives the keyword message
holder: 'William Gates 3'
The message expression finally
returns the receiver of this keyword
message.

10 + (10 negated) negated

The precedence rules do not always
accurately reflect the order of evaluation as
implemented by the Smalltalk parser, the
software that ‘reads’ the code. The parser
works strictly left to right but before
evaluating a message it looks ahead to the
next message to check if it is of a higher
precedence than the current message. If the
next message is of higher precedence then it
gets evaluated before the current message.
The precedence tool (LB- 14 Practical 14)
uses the same rules as the parser and works
well as long as brackets are not used. It
works reliably for evaluating expressions that
are combinations of binary, unary and
keywords but you should avoid using it
with bracketed expressions.
 The precedence tool finds + realises it must look ahead

one for a message of higher precedence. In the look
ahead it instead finds the brackets and correctly
evaluates the contents of those brackets. It then ‘forgets’
that it still hasn't completed the original search for a
message of higher precedence and incorrectly evaluates
the binary message (10 + -10) before sending
negated to 0. The tool leads you to an incorrect
answer of 0. The correct result of the message
expression should of course be 20.

aFrog right position:(aFrog position)

If you follow the precedence rules you will evaluate the
bracketed message first. This will lead you to a wrong
evaluation. The parser evaluates aFrog right first - it
reads left to right – this is the first unary message. If
aFrog is a newly created instance with position of 1
then the above expression will set its position to 2 not
1

 Structuring Smalltalk

Branching

Looping

The concept of
sequence in a
program is that
each message
expression
(separated by a
full stop) is
executed one
after the other.

There are two mechanisms by which this linear
 progression through a message series can be
 changed. These are called branching/selection
 and looping/iteration.
 By employing the concept of branching we can
 follow different paths through a message expression
series. In branching a boolean condition (ie an
expression which will return either the object true
or false) determines which path is taken (see
Ch.16 p3). If there are two possible paths, the
Smalltalk message ifTrue: ifFalse: is
appropriate.

 E.g
(anAccount balance > 1000000)
 ifTrue: [Dialog warn: 'Status A']
 ifFalse: [Dialog warn: 'Status B']

 (anAccount balance > 1000000)

Dialog warn: 'Status A'

true

Dialog warn: 'Status B'

false

myFrog := Frog new.

3 timesRepeat: [myFrog
right]

In Smalltalk sending the
timesRepeat: message
results in a count-controlled
loop. The receiver, an integer
object, determines the fixed
number of times that the loop
body will execute. The loop
body is contained in the
argument which will be a
Block (since it is code that will
be repeatedly evaluated.) (see
Ch.20 p10).
In this example the code inside
the block is repeated 3 times.

The terms iteration and
loop are interchangeable.
There are two main parts to
a loop construct. The loop
body is the message
expression, or expressions
that are to be repeated.
There must also be a way of
controlling how many times
the loop body is executed.
Loops generally fall into two
categories. In a count-
controlled loop it is
determined how many times
the loop body will execute
before the first iteration
takes place.

anAccount := Account new.

anAccount balance: 536870912.

anAccount overLimit: 1.

anAccount := holder: 'Bill Gates'.

It may be the case that the situation is not an “either or”
situation but that a message expression(s) should or should
not be evaluated depending on the Boolean condition. In
these cases a simple ifTrue: or ifFalse: message is
sufficient. E.g.
(self balance isNil)
 ifTrue: [self balance: 0].

 Looping continued

The second kind of loop is event-driven,
whereby an event happens inside the loop
that leads to the halting of execution. In
Smalltalk the messages whileTrue:
(Ch 20 p11) and whileFalse: (Ch 31
p19) cause the loop body inside the
argument block to be repeatedly executed
whilst the condition in the receiver block
returns true, in the case of
whileTrue: , or returns false in
the case of whileFalse: .

|x|

x := 1.

[x < 3] whileTrue: [Dialog warn:
 'This is loop ', x
 printString.

 x := x + 1]

Dialog warn: 'This is loop ',
 x printString.
x := x + 1

false

 x < 3

 true

 x := 1.

This will loop twice before the
condition returns false. Once
this happens the next message
expression in the sequence after the
whileTrue: message will be
evaluated.

Notice that the receiver, a Block that
contains a Boolean condition
expression, is evaluated at least once to
decide if the loop body is to be
executed. At the end of each iteration it
is evaluated again to see if another pass
through the loop body is required.
When using this kind of loop it is
important to always ensure that within
the loop body there is an expression,
that will eventually change the boolean
condition so that the loop body will
stop executing. In the example above,
the expression x:= x + 1 will
ensure that regardless of value to which
x is initialised it will eventually be
incremented to a value of 3, at which
point the receiver will return false and
the loop will exit. If you inadvertently
write a loop where there is no provision
made for the boolean condition to
change, then you get an infinite loop,
and your machine will appear to freeze
as it repeats the loop body ad infinitum.
Pressing Ctrl+Q together may solve
this problem.

(anAccount balance >= chequeAmount)
 ifTrue: [
 Dialog warn: 'Pay cheque']
 ifFalse: [
 ((anAccount overLimit + anAccount balance) >= chequeAmount)
 ifTrue:[
 Dialog warn: 'Overdraft needed']
 ifFalse:[
 Dialog warn: 'Bounce cheque']]

Nested Structures
In both branching and looping you may have ‘nested’
structures. That is loops and branches that are themselves
within loop and branch bodies. In these cases, proper
indentation is helpful in signposting the structure of the
code.

